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NONSTATIONARY FLIGHT

By Angelo Mi.ele

SUMMARY

general method concerning optimum problems in
is developed and disaissed.

IN

nonstationary

Best flight techniques are determined for the following conditions:
● climb with minimum time, climb with minimum fuel consumption, steepest

climb, descending and gliding flight with maximun time or with maximun
distance.

3.
Optimum distributions of speed with altitude are derived assuming

constant airplane weight and neglecting curvatures and squares of path
inclination in the projection of the equation of motion on the normal
to the flight path.

The results of this paper differ from the well-known results
obtained by neglecting accelerations with one exception, namely, the
case of gliding with maximum range.

The paper is concluded with criticisms and remarks concerning the
physical nature of the solutions and their usefulness for practical
applications.

SYMBOLS

c weight of fuel consumed

Fa = Vzpzq = sin (3/sin8U acceleration factor: ratio of effective
rate of climb to the one computed neg-
lecting accelerations

*“Soluzioni Generali di Problemi di Ottimo in Volo Non-Stazionsrio.”
L’Aerotecnica, n. 3, vol. XXXII, 1952, pp. 135-142..

%he author wishes to thsnk Professor Placido Cicala, of the
Polytechnic of Tu@n and of the University of Cordoba, for his helpful

# suggestions.
-.
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g acceleration of gravity

P lift

q weight of fuel consumed

Q, airplane weight

R aerodynamic drag

s distance flown

NACA TM 1-

—

?.

per unit time

—

so horizontal projection of the distance flown

t time -.

T thrust

v
●

speed ..

v= =Vsin Fl effective rate of climb P-

Vzu = V sin t3u rate of climb computed from the eq~-tions of uniform
flight .-.

z altitude -.

z* altitude of tropopause

e effective path inclination (positive for clinibingflight)

eu path inclination computed from the equation of uniform
flight (positive for climbing flight)

1. INIROIXJCTION -

h the past airplane
“neglectingaccelerations,
equations of motion.

The smsll curvatures

performances have usually been determined by
which”results in meat simplifications in th&

—

associated with the usual pa%hs of an aircraft
in a vertical plene justi~ the assum@ion of zero-centrifugal forces.
On the other hand, the inertia tangential forces (often logically &Ls-
regsrded in the study of perfo~.cesof maqy conventiofialedrcraft) .

must be taken into account in the analysis of high-performance Jet
airplsnes, because of the lsrge values of both the veucity and its
variation with the altitude. *
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●

For instance, it is weld lmown that the speed for best clinibof sny
ty_peof aircraft increases with altitude (incompressible flow). This

Y mesms that the total energy developed by the power plant is not only
used to work against the aerodynamic drag and the earth’s gravitational
field, but also to increase the kinetic energy of the atrcrtit.

When the terms due to acceleration sre neglected, then the esti-
mated clinibingperformances are too optimistic; the values of time and
fuel consumption calculated in this wqy are less than the actual ones.

On the other hand it appesrs that compressibility effects can some-
times decrease the speed for best clind as altitude increases, especially
in the stratosphere and for aircraft with high wing loading; in this case
the rate of climb computed from the equation of uniform flight is less
than the actual one.

The shove-mention~d reasons emphssize”the need for an sndysis of
. optimum flight conditions based on the consideration of the nonuniform

character of the motion.

4 The first attack to the problem was performed by F. C. Phillips
(ref. 1), who proposed a kinetic energy correction to the results pre-
dicted with the equations of a uniform flight. The calculation of such
a correction was carried out by assuming a distribution of speed with
altitude identicsl with the one-which maximizes the rate of cm com-
puted without accelerations. (See ref. 4, also.)

Other studies, due to Otten (ref. 2) and Hsyes (ref. 3), extended
Phillips’ results by taking into consideration the true path inclination
and the effects of compressibility.

But only in recent years the problem has been considered and
analyzed in its entirety. h particular, the author (ref. ~) has solved
the problem of climb with minimum time by using a transformation based
on Green’s theorem, while Lmh (ref. 6), following a study due to
Kaiser (ref. 7), has treated the same problem by an elegant graphic-
analytic ~thod based on the concept of energy height (Ze =Z+vq?g).

The present paper generalizes a method described in a.preceding
study (ref. 5) and extends its results to the following types of flight:
climb with minimum time; climb with minimum fuel consumption; steepest
clinib;descending or gliding flight with maximum time or with maximum
horizontal distance.

For each case the optimum technique of flight is determined; that
is to say the function V =. V(Z) which, from given initial conditions
(Vl, Z~) to fixed final conditions (V2, Z2), will maximize or minimize

the time, the fuel consumption or the distance.
*
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Results are discussed and criticized. Their limitations me pointed
out; their field of applicability is indicated for the different types
of todqy!s engine groups (reciprocatingengine, air-breathing jet engines,
rockets).

The

(a)

(b)

2. BASIC HYPOTHESES

following hypotheses me basic for all the work:

Airplane weight is assumed constant.

Curvatures snd squares of path inclination sre assud negli-
gible-with regsrd to thei~ effects & that psrt of the drag depending on
the angle of attack. ““

(c) Power.plant is of an unspecified type; but its thrust and rate
of fuel consumption sr~,assumed to ‘befunctions of the following nature:

(d)

(e)

(f)

T =T(V, Z) (1)

q’ q(v, z) (2)

Angle between the vectors T, V is not taken into consideration.

Only flight pathsrestricted to a vertical plane are considered.

The aerodynamic lag is disregarded; the air forces are calculated
as in steady flight. .—

3. FUNDAMENTAL EC$JATIONS

The following scabr expressions canbe derived projecting the
fundamental equation of the motion on the tangent and on the normal to
the flJght path: — -=

T-R- [1Ql+;# sinL3=0 (3)

P-
[

~2 ~

1
QcosO+——sim3 =0 (4)

gdz
II
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According
substituted by

to the preceding hypothesis (b), equation (4) csn be

P- Q=O (5)

This approximation is important. As a matter of fact, the rate of
clinibgiven by

Vz=VsinO= IT - R)V/Q

~+VdV
:=

becomes a function of V, Z, snd dV/dZ only, ss cm
equations (l), (5), and (6), the expressions for the
and the polar. #

(6)

be seen from
aerodynsnd.cforces

Equation (6) shows that the effective rate of cliniband the sine of
the effective path inclination can be expressed as the product of the
corresponding values obtained for uniform f~ght

~u= (T- R)V/Qv (7)

sin Elu= (T- R)/Q (8)

by the correction factor

Fa =
1

1+1 dV2——

1
2g ti

(9)

which expresses the effects associated with the nonuniform character of
the motion. .

It should be noted that the preceding equations are general; there-
fore, they contain those corresponding to gliding flight as a special
case (T= O).

—.

.

.



6

The

(a)

(b)

(c)

following cases of

Climb with minimum

Climb with minimum

Steepest climb.

4. CLIMBING FLIGHT

It iS assumed
aerodynamic dr~.

that the

flight are discussed:

time.

fuel consumption.

thrust at ti times is

4-a. ClinibWith Minimum Time

NACA TM 1388

greater than the

The time necessmy to fly from given initial contitions (VI, ZJ

—--

to fixed final conditions (V2, Z2) is

where

@
Q= = O(V, z)

g(T - R)

q = v+ =‘(v’‘)

(10)

(IL)

(1’)

A

*“
‘.

—

..—

r

.

Here it is desired to detirmine the best flight technique; that is .” ‘-
to SW, the particular speed-height relationship V = V(Z) which
minimizes intefgal (10).

The investigation is simplified if the~roperties_of the .fu.nction

.
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~ aa
u.)(v, z)=— ——

av az

7

(13)

sre used instead of the application of variational methods2. .

The curve UI= O divides that zone of the (V, Z) plsne which is of
practicsl interest for f~ght operations (fig. 1) into two regions:
A, where m <’O; B where m> O.

Four cases of fllght (i.e. four types of boundary conditions) are
possible according to the relative positions of points 1 and 2 with
respect to the curve o = O:.

Case I: Point 1 in zone A; point 2 in zone B.

Case II:

Csse III:

Case IV:

Point 1 in zone A; potnt 2 in zone A.

Point 1 in zone B; point 2 in zone A.

Point 1 in zone B;

Here, only the first case is
z 5Z2.

The optimwn flight technique

(1) Acceleration at constant

definedby o(V, Z~) = O.

point 2 in zone B.

analyzed tith the restriction that

is the following:

sltitude Z1 from V1 to the speed

(2) Climb from Z1 to ~ using the distribution of velocities

definedby o(V, Z) = O.

(3) Acceleration at constant altitude Z2 frmn the speed (VN)

definedby m(V, Z2) = O to V2.

2The exact study of the problem, made using equation (4) instead of
equation (5) enables one to take into account four boundary conditions,
e.g. values of V, e corresponding to initial and final altitudes.

. However, the approximations involved in the present analysis permit
one to impose only two boundsry conditions, e.g., values of V at the
initial and final altitades. h fact, values of e are a consequence,

. because of equations (3) snd (7), of the ssme solution which is being
investigated in this paper.
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The minimal nature of the aforemntiofied

.

NACA TM 1388

speed-hei~ht relationshi~ n
will be proved by showing that the following in~quality-is satisfied: ‘

.

(14j

where T is the time necessary to pass from 1 to 2 using the optimum
.—

path lMN2 snd t is the tip necesssry to fly along the srbitrsq
path lK2 (which, however, shall be physically possible under the
imposed condition T>R). .- ..

The line integral (14.)can be separated into two integrals associated
with the closed circuits K2NK and KMIK

By Green’s theorem the line integrals contained~n equakion (15)
can be transformed into surface integrals connected with the cress _ ..:–
SA and SB encompassed by the above-mentionedboundaries—

(16)

.
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that At >0. ~us the theorem is proved3. It must be emphasized that
the optimum path includes a line MKN slong which the distribution of%
speed is defined by

aij ao=o
si-az

(17)

or according to equations (7), (n), and (12) by

a(T-, R)v_Va(T - R)v (18)
W g

.

The ssme problem can be studied with
. Variations. But, probabm because of the

&
. .

the help of the Calculus of
basic hypotheses, only the.

central part ~ ‘of the-optimum path csn be dete-%ined & that ws#.

h-b. CJJnibWith Minimum l?uelConsumption

The weight of fuel necesssry to fly from (Zl, VI) to (Z2, V2) is

J
2La=

J

2
c = (Ql dV + j?ldZ (19)

1 v~ 1

%or case II which seems to have some practicsl interest a quasi-
optimum solution (when V2 is not much less than VN) couldbe the
following:

(1) Acceleration at constant altitude Z~ from VI to VM.

(2) Climb using the speed distribution defined by u = O until
the sltitude Z3 corresponding to V2 is reached.

(3) Climb at constant velocity V2 from Z3 to Z2.

4The study of the problem of absolute minimum without the restrictive
condition Z1 ~ Z ~ Z2 leads to an optimum trajectory composed of: -..—

(1) A central pattern along which the distribution of velocities is
. definedby equation (17).

(2) Two initial and final branches that must be flown in vertical
flight (ascending or descending) according to the boundary conditions of.
the problem (see appendix).
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where

al =@ = ‘Q-
g(T - R)

—

.?-.

.

(20) “-

(ti)

The problem of finding the special function V = V(Z) which mini-
—

mizes integral (19) is anslogous to the preceding one; hence, the solution
is of the ssme type. With reference to case 1, snd again with the
restriction that Z1 ~ Z ~ Z2 the best flight technique cmyrises tw~ —

accelerated motions at the initial and final sltitudes Zl, Z2
—

and a ● “

central climbing path slong which the distribution o~speeds is defined
by

—
R

or, according to equations (20)

[1a (T-R)V

%q

and (21), by

[1=~a(Td3)v
gz q

(22)

(23)

h-c. Steepest Climb

The total distsnce traveledby the aircrsft flying from (Zl, Vl)

to”(Z2, VP) is
.—.

J
2dz_

s =
f

2 (02 dV + *2 W)
-1 sin e .

(241 ‘“.-
-.

.

.



NACA TM 1388 l-l

.
where

-1

=vO=
VQ

‘2 @ - R)
(25)

The speed-height
is snalogous to those

(26)

function V = V(Z) which minimizes integral (24)
minimizing integrals ,(10)snd (19).

With reference to case I smd to the
eltitude the best distribution of speeds

aq2
UJJv, z) =z -

centrsl pattern flown at vsxying
is defined by

aq.o
az

or, according to equations (~) and (26), by

(27)

a(T-R)=~h(T -R)

av g az

‘Thehorizontal pro~ection of the distance traveled is

J

dz.
so=—

ltane

If the path inclination is sufficiently small, so that it is
$ustified to assume sin es tan 0 equation (29) becomes identical with
equation (24). It follows that the distribution of speeds defined by
equation (28) minimizes the horizontal projection of the distance
traveled and is theref~re the best from the point of view of the su-

. called “steepest climb .

*

(28)

(29)
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.

(a)

(b)

5 ● DESCENDING

following conditions of flight

Descending flight with maximm

FLIGHT

.
are examined: .—

time . —

Descending flight wih maximum horizontal.distance.

Thrust is assumed at all times to be less than the aerodynamic drag.

5-a. Descending Flight With Maximum Tim

Now, case 111 i.sexamined (the ssme nomenclature of the preceding
paragraph is used); nsmely, deceleration from high sltitude and high
speed to low altitude and low speed. This condition of flight is of
more practical interest than cases 1, II, and IV. .-

Under the restrictive condition Z1 ~ Z ~ ~, the best flight

technique is the following (see fig. 2):
,

(1) Deceleration at constant altitude Z~ from V1 to VM defined

W CD(W Zl) = O (the function o(V, Z1) is defined by equation (13)).

(2) Descending flight from Z~ to”-”Z2

velocities defined by u(V, Z) ; O.

(3) Deceleration at constawt altitude

definedby o(V, ~) = O to V2.

using the distribution of

Z2 from the speed VN

This statement can be easily proved using Green’s theorem as in the i
preceding paragraph. It should be noted that the distribution of speeds
necessary to climb with minimum time is of the ssme form as the speed-
height relationship required to descend with msximum time. However bo~h ,
distributions are not numerically identic~ stice tifflerentthrusts are
required.

The results valid for gkl.dingflight may be derived from the above
as a limiting process by letting T + O.

The equation for the optimum speed-hei~t function for the central
pattern MN flown at variable descending altitude i.s ~mnby ;“ ““ ““ -

a(RV) .:=

.

av : (30,
.-
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~-b. Descending Flight With Maximum Horizontal Distance

The best technique for this type
described in the preceding paragraph.

It consists of two decelerations

of a central pattern defined by ~(V,

of

at

z)

flight is analogous to

const~t altitude Zl,

= O. (Case III).

For gliting flight the best distribution of velocities can
obtained u- a p~tic&r case of equation (28) for T + O

&=VaR- —.
& gaz

13

that

Z2 and

be

(31)

It shouldbe noted that the solution definedby equation (31) is
identical with the one that can be obtained from sn snal’sis based on
the equations of uniform flight.if the variation of the
the Reynolds and Mach ntn?ibers

As a matter of fact the
case, on the dynamic pressure
equation (31) is given by the

is neglected.

aerodynamic drag depends,
only. Thus the practicsl
equivalent expressions

tiag with both

in this latter
solution of

(32)

6. REMARKSMD CRITICISMS ON TEE ACHIEVED SOIJJTIONS

A short review of the obtained results will clarify their pbysicsl
nature and will be helpful from the point of view of practical applications.

6-a. Comparison Between Stationary and kstationary Solutions5

Solutions commordy used in the practical applications of the
Mchanics of Flight are those derived from a “stationary” analysis~.

%ithin the limits of the present investigation the term “sts%ionary
(instationary)solution” means a solution obtained neglecting (taking into,
account) inertia tangential forces. This terminology is used for the sake
of brevity. The so-called aerodynamic lsg is disregarded.” U other wordq
the air forces tie calculated as in a steady flight.
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They sre the fcillowhg:

For clinibwith”minimum time

mv-mo=o
m

For climb with minimum fuel consumption __

For steepest climb

a(T-R)=O

av

For msximum endursnce in gliding

a(Rv) - ~
av

For maximum range in gliding

.

—

..=

*
.—

—. --
e

(33)

.

(34)

.

r,,

(35)

—

(X)

&o—=
av

These solutions could also be achieved as a particulsx case of those
given-in this paper if one ‘supposesthat the..motj.ontakes place in sn
ideal ambient of constant air density. In fact in this latter cs&e-th~
derivatives of T, q, and R with respect to Z vsnis~ snd equations (18),
(23), (28), (3o), and (31) srereduced toeqiations (33), (34), (35), (36), . “
and (37), respective~.

?
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. It is evident that the second menibersof equations (18), (23), (28),
(3O), and (31) express synthetically the contribution given by the accel-
eration to the equation defining the optimum speeds.

??
—

6-b. The Case

If power p:snt is of ~uch a type
assumption, the stationary solutions
fuel consumption become identical.

ho—=
W

as to justify the above-mentioned
for minimum time and for minimum

Therefo;e, it is logical to suppose that in this case the
“instationary solution for minimum time will not differ too much from
the one optimum for minimum fuel consumption. Some ~rical calcula-
tions have confirmed this last concept.

.
6-c. me Case q= constant

The “inStationary” solutions for minimum time and
* consumption become identical (rocket-poweredaircraft).

for minimum fuel

6-d. Discontinuity of the Solutions at the Tropopause

The optimun speed-height relationships givenby equations (18),
(23), (28), (30), and (31) have a discontinuity at the tropopsuse. This
fact is related to our manner of conceiving the standard atmosphere in
which the derivatives with respect to h of the density, temperature
md pressure have two values at Z = Z+.

As a consequence, for my csse of flight there are two optimum
speeds at the tropopause, the one being deduced by introducing into
eqwtio~ (18)s (23)> (28)> (30), and (31) the properties of the standsrd
troposphere (Vt)”and the other by introducing into the ssme equations the
properties of the standard stratosphere (V~).

The mechanical meaning of the aforementioned discontinuit~ may be
understood using Green’s theorem as in the previous sections. For
instsnce, in the case of a turbojet d.rcrsft this indicates the necessity
of accelerating the aircrsft at Z = Z* from Vt(Vs) to Vfi(Vt) if the

6Analogously a discontinuity in the optimum speed-height relation-
ship can be detected at the criticsl sltitude (Zc) of en aircraft powered
by a reciprocating engine-propeller combination. This fact depends on.
the existence of two values of bP/bZ at Z = Zc (P = shaft horsep~er

of a conventional engine).

●
..

. :.
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achievement of the best climblng performances is desired (see fig. 3). .

As a consequence the optimum flight technique for climb with minimum time
(case 1) from (Vl, ZIC %) to (V~, Z2>~) Under thel.imitlng condition ,
Z1SZSZ2, consists of:

(1) Acceleration at
by o(V, 21) = O.

(2) Climb from (VM,
ship defined by “u(V,Z)

(3) Acceleration at

..(4)Climb from (VS,

constant sltitude .21 from V1 to ~ defined

Zl) to (Vt, ~) using the speed-height relation-
.

= 0.
—

constant a.ititude ~. from Vt to Vs.

~) to (VN, 22) using again the distribution of
speedk defined by u(V, Z) = O.

(5) Acceleration at constant altitude Z2 from VN to V2.

.

6-e. Hypothesis Concerning Curvature and Path Inclination

The practical consequence of the hypothesis (b) of section (2) is #

sn approximate calculation of that pert of the drag which depends on the
lift● The errors involved have small importance for many of the cases
of flight here considered.

—
— —

In any caae the following concept should be emphasized: the use of
the solutions here achieved is logical only”if the errors associated with ,
the neglect of curvatures and squares of the path inclination me small
with respect to those smoided taking into account the tangential
accelerations.

A systematic investigation of the exact limits of applicability of
the present theory to the various types of modern
scope of this report. However, it seems possible
hypotheses concerning the curvatures snd the path
fied in the fo~owing cases:

(1) Climb with minimum time and with minimum
propelled aircraft and conventional aircraft with
loadlngs.

aircraft is beyond the
to anticipate that the
inclinations ar~ justi-— —

fuel consumption: Jet-
high wing-and-power

(2) Steepest climb: turbojet aircraft-with low specific thrust (T/Q)
end good aerodynamic efficiency (results concerning the stee~est c~mb ~e
not only influenced by the appr~imations made in the projection of the
equation of motion on the normal to the flight path but also by the sub=
stitution tan 0 in lieu Of sin 0 in the projection of the equation of’ w

motion on the tangent to the flight path).

b
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.
(3) Gliting flight: airplsnes hating high wing loading and good

aerodynamic efficiency.

m

6-f. Hypothesis Concerning the Weight of the Aircraft

The weight of the aircraft changes during the flight because of the
fuel consumption. Consequently, the true optinnm speed-height relation-
ships are somewhat different from the ones previously derived. The true
rates of climb sre”greater than those calculated by assuming Q = Constant.
According to the practical values of dQ/dt the following remarks are
formulated:

--

(1) Aircraft powered by air-breathing engines: The speed-height
functions previously derived are substantially correct. If more preci-
sion is desired the weight changes can approximately he taken into account
by iterating the calculations as follows:

(a) Calculate the optimum distributions of speeds with equations (18),
(23), =d (28) according to the case of flight and supposing Q = Co~tant.

8 (b) Determine the approximate,values of the fuel consumption on the
basis of the above-mentioned distributions of speeds.

(c) Calculate the instantaneous weights of the aircrsft at any
altitude.

(d) Determine the new optimum speed-height functions by introducing
into equations (18), (23), snd (28) the instantaneous weights. Calculate
also the new values of integrals (10), (19), and (24).

(2) Rocket-powered aircraft: Fran a purely theoretical standpoint
the results here derived cannot be considered valid for this kind of air-
craft because of the important dynsmical effects associated with the
changes of the airplane weight.

Notwithstanding, the author believes that the obtained solutions
me very close to the true solutions for tropospheric flight above all
if iterative procedures, like the one outlined above, axe applied.

That depends on the fact that the only temn of equation (18)
depending on the weight is that psrt of the drag which is a function of
the lift; that is to say the so-called “induced” drag, which is small at
low altitudes because of the low angles of attack used by rocket-powered
aircraft in the climbing flight.

6-g. Additional Remarks Concerning Centripetal Accelerations
.

The neglect of curvatures (and therefore of the deviation times
necessary to pass from one branch to another of the optimw path) has aa
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qualitative
while it is

influence on the results leading to discontinuous solutions;
.

logical to think that the exact study of the problem msde
with variational methods snd using equation (4) instesd of egpation (7) F
wotid bring continuous speed distributions: —

Consequently, the results contained in this paper are to be con-
sidered as limiting results whose degree of_agreemnt_with experiments
increase as the ratio of sum of deviation times to the total the
decrease. -

6-h. ConsiderationsRelated to the &thod Used in This Paper

The main effect of the hypothe~es concerning weight, curvatures
and path inclinations has been the Qosqibi.lltyof expressing
dynamic drag as a function of the type

R =R(V, Z)

the aero-
.

.—

(38)

It follows that if the basic ~otheses me chaiigedformulas (l&),
(23), (28), (30), and (31) may retain their validity provided the drag
remain still a function of only the speed and the altitude.

.

7. CONCIJJSIONS .— —
.

A genersl m&hod concerning optimum problems in_nonstationary
flight is developed and discussed. VarioW. conditions of flight in a
vertical plane (climb with minim.m time, climb with minimum fuel con-
sumption, steepest climb, “descendingand gliding fk@it with maximum
time or space) are studied; the correspondingbest techniques of flight,
i.e. the optimm speed-height relationships, sre detei@ned, —

Each optimum path consists of sn initial and a final branch whit-h
depend on the boundary conditions of the problem and a central portion ~
which is flown at vsrisble altitude &d spe6d.

Along this central pattern the speed-height relationship obeys the
following rule: —

If X= X(V, Z) is the function whose msximum or minimum with
respect to the speed

.

ax..
iF-
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* defines the best speed-height
is studied with the eqyations
tion of the s6me problem when

. is defined by

relationship when a given optimum problem
of uniform flight, then the modified solu-
the effects of acceleration are considered

The optimum speed-height relationships have a discontinuity at the
tropopause ad differ in general from the solutions based on the assump-
tion of uniform flight with one exception, namelyf gliding with maximum
range. This latter result is valid if the variation of the drag with
both the Mach and Reynolds nwibers is neglected.

.
The practical.application of the method given in this paper to the

particular case of turboJet aircraft till be published soon.

w

.. ‘F ● ‘-
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APPENDIX
.

.
PROBLEFS OF ABSOLUTE OPTIMUM

A number of minimal problems have beetitreated @ the prece&hg
paragraphs yith the help of some restrictive conditions. For exsmple,
the restrictive condition Z1 ~!Z ~Z2 has been used...tostudy the cllaib

with minimum time (case I). h other words the problem of accelerating
and climbing from low speed and low altitude to high speed and high alti-
tude has been analyzed by considering only paths internal to the region
of space Hmited by the horizontal planes corresponding to the initi~
end final heights.

— .—

—
However, it may be noted that the method given fi this paper msy

be easily extended to the study of problems of absolute optimum.

If no restrictive condition is imposed to the altitude, the speed-
height function optimum to climb with minimum time consists of a central
branch whose equation is still u = O and of two ini~ial and final por- r

tions which must be flown in vertic~ flight (ascending or descending)
according to the boundary conditions of.the problem (see table I smd
fig. 4).

This state~nt msy be easiw provedby applyiW.Green’s theorem as ~
shown in section l+.

The main comments concerning the paths indicated..infigure 4 are
the fo~owing:

(a) For jet-propelled slrcrtit the hypothesis P = Q leads to
errors which sre sma~ along the line whose equation is u = O and
also for the vertical branches H and X2 provi.dedthey sre flown at
high speed.

On the other hand the errors m~ prob~ly be of gome importance
for the vertical branches it apart of them.is to be flown at relatively
low speed (that depends evidently on the boundazy cond~tions of the
problem).

(b) The optimum speed-height relationships shown in figure 4 have
a discontinuous character. On the other hand it is logical to presume
that, should the problem be studied with the use of the exact equations
of the motion, results would have a continuous chakacter.

Consequently, the results contained in this paper must be considered
.

as limiting results as shown in section 6-g. —
;
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>
In addition, it might be weU. to bear in mind that, even if an

exact study of the problem were possible from a mathematical standpoint>
the conclusions would still have to he submitted to other limitations,.
namely, those imposed by the physiological strength of the pilot ancl
those ”imposedby the structural strength of the aircraft.

Translatedby A. Miele7

. 7Translatedhy the author, who wishes to express his thanks to
Dr. Nathan Ness and to Mr. Lawrence S. Galowin for their kind corrections
of the Ehglish manuscript..
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TABLE I

SPEED*BEIGBT RELATIONSHIPS OPTIMUM FOR CLIMBING WITH MINIMUM TIME

Case of
Flight

I

II

111

Iv

Point 1
is in zone

A

A

B

B

Point 2 II Speed-height function

===4===
B

A

A

B

Vertical
dive

Vertical
dive

Vertical
climb

Vertical
climb

Branch MN
—

u= o

f-!.)= o

(D= o

CD= o

Branch N2

VertLcaJ-
dive

Vertical
climb

Vertical
climb

Vertical
Mve

*

.
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—

Figure l.- Speed-heightrelationship1MN2 forclimb withminimum
time;case I; ZI s Z ~ Z2; initialand finalaltitudesare either
bothtroposphemc or bothstratospheric.

Ml

L

—

.—

Figure 2.- Speed-heightrelationshiplMNZ fordescendingflightwith
maximum time;case III;Z 2 Z 2 Z2; initialand finalaltitudesare

$assumed eitherboth troposp ericor bothstratospheric.

.

.
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N2
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ilM

Figure 3.- Speed-heightrelationshiplMtSN2 forclimb withminimum
time; case I;21 S Z S Z2; initial altitudeisassutnedtobe
tropospheric;finalaltitudeisassumed tobe stratospheric.
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Figure4.- Speed-heightrelationship1MN2 forclimb withminimum
time;tiitialand finalaltitudesare assumed eitherbothtropospheric
or bothstratospheric.
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